Multilevel Monte Carlo for Stochastic Differential Equations with Small Noise
نویسندگان
چکیده
We consider the problem of numerically estimating expectations of solutions to stochastic differential equations driven by Brownian motions in the small noise regime. We consider (i) standard Monte Carlo methods combined with numerical discretization algorithms tailored to the small noise setting, and (ii) a multilevel Monte Carlo method combined with a standard Euler-Maruyama implementation. The multilevel method combined with Euler-Maruyama is found to be the most efficient option under the assumptions we make on the underlying model. Further, under a wide range of scalings the multilevel method is found to be optimal in the sense that it has the same asymptotic computational complexity that arises from Monte Carlo with direct sampling from the exact distribution — something that is typically impossible to do. The variance between two coupled paths, as opposed to the L2 distance, is directly analyzed in order to provide sharp estimates in the multilevel setting.
منابع مشابه
The multilevel Monte-Carlo Method for stochastic differential equations driven by jump-diffusion processes
In this article we discuss the multilevel Monte Carlo method for stochastic differential equations driven by jump-diffusion processes. We show that for a reasonable jump intensity the multilevel Monte Carlo method for jump-diffusions reduces the computational complexity compared to the standard Monte Carlo method significantly for a given mean square accuracy. Carrying out numerical experiments...
متن کاملStabilized Numerical Methods for Stochastic Differential Equations driven by Diffusion and Jump-Diffusion Processes
Stochastic models that account for sudden, unforeseeable events play a crucial role in many different fields such as finance, economics, biology, chemistry, physics and so on. That kind of stochastic problems can be modeled by stochastic differential equations driven by jumpdiffusion processes. In addition, there are situations, where a stochastic model is based on stochastic differential equat...
متن کاملMultilevel Monte Carlo for stochastic differential equations with additive fractional noise
متن کامل
Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation.
This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to intro...
متن کاملNumerical Methods in the Weak Sense for Stochastic Differential Equations with Small Noise
We propose a new approach to constructing weak numerical methods for finding solutions to stochastic systems with small noise. For these methods we prove an error estimate in terms of products hiεj (h is a time increment, ε is a small parameter). We derive various efficient weak schemes for systems with small noise and study the Talay–Tubaro expansion of their global error. An efficient approac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 54 شماره
صفحات -
تاریخ انتشار 2016